

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Product quality inspection 2

Course

Field of study Year/Semester

Product Lifecycle Engineering 2/3

Area of study (specialization) Profile of study

practical

Level of study Course offered in

Second-cycle studies English

Form of study Requirements

full-time elective

Number of hours

Lecture Laboratory classes Other (e.g. online)

10 10

Tutorials Projects/seminars

10

Number of credit points

2

_Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

dr inż. Agnieszka Kujawińska prof. dr hab. inż. Michał Wieczorowski

email: agnieszka.kujawinska@put.poznan.pl email: michal.wieczorowski@put.poznan.pl

tel. 61 665 27 38 tel. 61 665 35 67

Faculty of Mechanical Engineering Faculty of Mechanical Engineering

Piotrowo Street No 3, 60-965 Poznań Piotrowo Street No 3, 60-965 Poznań

_ Prerequisites

Basic knowledge of technical metrology, technical drawing and machine parts. Basic knowledge of mathematical statistics. The ability to think logically and independently obtain information from various sources, as well as understanding the need for learning.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course objective

To acquire knowledge about modern measurement systems used in industry and their correct selection and use.

Course-related learning outcomes

Knowledge

Classes will cover the theory of using slection methods of measuring systems to evaluate product quality. Student is able to characterize modern measurement systems used in industry. He knows the rules of their construction and technical restrictions.

Skills

Student is able to choose a measuring device and design a measurement strategy adequate to the measuring task.

The student is able to select and apply in practice non-destructive methods of material testing. Student knows how to process and analyze the obtained measurement results.

Student is able to determine the sources of measurement errors and eliminate them.

Social competences

The student can work in a group. Student is aware of the need and role of data analysis methods and of modern measuring systems in the economy and the need to constantly expand knowledge.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture: Credit in writing or oral on the basis of scoring questions (credit in the event of obtaining 51% of points:> 50% - dst,> 60% - dst plus,> 70% - db,> 80% - db plus,> 90% points - very good) carried out at the end of the module.

Laboratory: Credit based on reports from laboratory exercises. To get credit, all exercises must be passed.

Project: Credit based on the evaluation of the completed project presented in the form of a written report and presentation.

Programme content

Classes will be conducted in blocks consisting of lectures and laboratories / projects.

Topics of classes:

Coordinate measuring technique - measurements using CMM part 2 and 3.

Coordinate measuring technique - measurements with optical scanners part 2 and 3.

Methods for non-destructive testing of materials based on the measurement of physical quantities such as the value of induction and magnetic field strength, magnetostrictive and piezoelectrically generated ultrasonic pulses.

Test methods for thin coatings, flaw detection tests and test methods for materials based on measuring electrical resistivity, magnetic and acoustic properties, and internal friction. Hardness testing methods.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Teaching methods

Lecture: The lecture will be illustrated with a multimedia presentation containing the discussed program content

Laboratory: practical classes

Project: practical classes

Study vistis: As part of the module, two study visits in industrial enterprises are planned. The purpose of the visits is to show in practice the functioning of various forms and types of quality inspection, measurement systems .

Bibliography

Basic

1. Handbook of Measurement Science, Vol.1:Theoretical Fundamentals-1982, vol2: Practical Fundamentals, Edited by P.H. Syndenham, 1983.

2. Paul E. Mix, Introduction to Nondestructive Testing: A Training Guide, 2nd Edition, Wiley, 2005.

Additional

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	30	1,0
Student's own work (literature studies, preparation for	20	1,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań